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Properties of the subset of polygonal paths in the Hilbert space of paths referring 
to a d-dimensional quantum-mechanical system are examined. The results are 
used to discuss various types of polygonal-path approximations appearing in the 
functional-integration theory. The uniform approximation is applied to extend 
the definition of the Feynman maps from our previous paper and to prove 
consistency of this extension. Relations of the extended F_, map to the Wiener 
integral are given. 

1. I N T R O D U C T I O N  

Functional integration often employs methods in which the p a t h  space 
under consideration is replaced by the subset of polygonal paths.  In this 
way, e.g., the Wiener integral of sufficiently smooth function(al)s can be 
evaluated (Cameron, 1960; Truman, 1978). However, while in the  men- 
tioned case the polygonal-path approximations represent a useful calcula- 
tion technique, they are of conceptual importance for the Feynman integral 
because of the absence of its sufficiently general and widely accepted 
definition. 

The polygonal paths were connected closely with the very beginning of 
the concept of F integral (Feynman, I948; Feynman and Hibbs ,  1965). 
Later they have appeared in various attempts to develop a rigorous F-integral  
theory, to say nothing of numerous nonrigorous calculations. We have  listed 
some of these attempts in the introduction of our previous paper (Exner  and 
Kolerov, 1980), hereafter referred as [I]: among them the Nelson var iant  of 
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Feynman's heuristic definition (Nelson, 1964; Reed and Simon, 1975) and 
its generalizations (Combe et al., 1978) as well as the method of Truman 
(1977, 1978, 1979) are based on variously modified polygonal-path ap- 
proximations. Let us recall some other treatments in which this idea played 
a central role: the above-mentioned paper of Cameron (1960) and those of 
Gel'land and Yaglom (1956), Babbitt (1963) [for a more complete bibliogra- 
phy till the middle of seventies we refer to (Albeverio and Hoegh-Krohn 
(1976), and further to the paper of these authors (1979), (Truman, 1979), 
and other papers contained in the same proceedings], or recently the 
treatment of F integrals on Riemannian manifolds (Elworthy and Truman, 
1979) and the general cylindrical approximation of Tarski (1979) with a 
particular choice of the path space and the reference family. 

The present paper is devoted to the study of polygonal-path approxi- 
mations on the Hilbert space of paths which refers to a quantum-mechanical 
system with d degrees of freedom. In the following section we examine in 
details properties of time-interval partitions and of the corresponding 
polygonal paths. Results of this treatment will serve in Section 3 for 
discussion of different types of polygonal-path approximations, in particu- 
lar those used by the above-named authors. Further we shall apply there the 
"strongest" one of them, the uniform polygonal-path approximation, to 
extend domain of the F maps introduced in [I] and to prove consistency of 
this extension. Among these maps the F_ i map is particularly interesting: 
we shall give some sufficient conditions under which it can be identified 
with the Wiener integral. For d = 1 the F_ i map is closely related to the 
sequential Wiener integral of Cameron (1960). We shall show that the basic 
theorem concerning the latter must be improved: modified conditions on 
the order of growth under which the assertion holds are given in concluding 
remarks. Applications of the polygonally extended F integrals to solving 
Schr/3dinger-type equations will be discussed elsewhere (Exner and Kolerov, 
1981b). 

2. PARTITIONS AND POLYGONAL PATHS 

We shall consider a d-dimensional quantum-mechanical system with 
the configuration space R J, the elements of which will be abbreviated as 
x = ( x ~  . . . . .  X d ) .  Let us introduce first some notation: 

J t=[O, t] ,  t > 0  

y: j t  ...,,Rd 
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is a R d-valued function, 7(r) = (35( r ) . . . . .  7d(r)), conventionally 

further 

d 

7(~).9(~) = E 7j(~)gj(~) 
j = l  

7~(~)=7(~)-~(~)  and 17(~)1=[7~(~)] ~/~ 

Co[jt;~d]_{7: jt..+Rd: 7 continuo us in Jt ,  7 ( t ) = 0 }  

7 is said to be absolutely continuous in jt  iff 7j, j - --1, . . . ,d ,  are absolutely 
continuous in j t  

A C0 [ Jr; R a]= {7 E Co[Jt;R a]: 7 absolutely continuous in Jr, 

clearly "~ L2(jt; R d) iff 3~j E L2(jt; R), j = 1 . . . . .  d 

d 

j = l  

We shall adopt in the following ACo[Jt; R d] as the path space; for the sake 
of simplicity we shall denote it often as ~ .  The following assertion is valid 
(Exner and Kolerov 1981a): 

Proposition 1. (a) ACo[Jt; R a] equipped with the inner product (., .) is a 
real separable Hilbert space. 

(a) The elements of ACo[Jt; R d] can be expressed by means of trigono- 
metric series: if 7 is an arbitrary element of ACo[Jt; Rd], then there exist 
ao ~Rd, (a,}~= i, {fl,}~= I c R d  which obey 

oo d 

:i: (1) 
n = l  n = l  j = l  

and such that 

y ( r ) = a o ( r _ t )  + ~ a,t . {2rrnr]+ ~ tint 
2-~-~n sin t ---7-- ] 2~rn 

n = l  n = l  

[ [ 2rrnr \ (2) 
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for  all ~ ' E J  t. Conversely,  any sequence of Rd-valued coefficients w h i c h  
fulfills (1) determines through (2) some element of ACo[Jt; Rd]. F i n a l l y ,  if 
a0, ( a , } ,  (/~,} refer to ~TE ACo[J'; Ra], the inner product  is given by  

oo 
t 

( 3 , , 3 7 ) = t a 0 . f i 0 + - ~  ~ ( a , - & , + / 3 , - / ~ )  
n = l  

(3) 

As ment ioned  above we shall deal with polygonal  app rox ima t ions  to 
the elements  of  ~ .  To  this purpose  we introduce first some more  n o t i o n s .  
Partition of  j t  is a set o={~/ :  i = 0 , . . . , n } ,  0 = ~ ' o < ~ - l <  . . - < ~ - n = t .  T h e  
family of  all these part i t ions is denoted as @ ( J / ) ,  further we i n t r o d u c e  
A i = [ ~ , , r i + l ]  and 8i = ri+ l --T i. A parti t ion o '  is said to be refinement of 
o, a ' 3  o, if each A~, is contained in some A~; clearly 3 defines a p a r t i a l  
ordering o n  ~( j t )  without  maximal  elements. The symbols  o (1 o '  a n d  
o t_J a '  mean  the part i t ions obtained by natural  ordering of the in t e r sec t ion  
and union of  o , a ' ,  respectively. A part i t ion o is said to decompose to 
subpartitions 0 (I) . . . . .  o "(r), a = (cd t) . . . . .  o (')} if o (1) = ( q ' i :  i = 0  . . . . .  il}, o (z) = 
(T,: i = i 1 . . . .  ,iz} . . . . .  o (~) = (~'i: i = i r_ t . . . . .  n} (end points of  the n e i g h b o r i n g  
part i t ions coincide). Let  o D o '  so that r E = ~',k for each k = 0 ,  1 . . . . .  n ' ,  t h e n  
the decomposi t ion  a = (e(~) . . . . .  o("')), o (k) = (r/: i = i~_ I . . . . .  ik}, is s a i d  to 
be generated by o ' .  Decomposi t ions  o = (o (1) . . . . .  o(r)}, 6 = (6 (1) . . . . .  6 (r)) are 
comparable if ~, = "?~, j = 1 . . . . .  r; in other  words, if the subpar t i t ions  o f  o 

and 6 refer to the same subintervals of j r .  Partit ions o, 6 E  p ( j t )  are s a i d  to 
be  commuting if there exist comparab le  decomposi t ions o = (o  (1) . . . . .  ~(~)} 
and 6 = (6 (I) . . . . .  6 (~)) such that  o (j) C 6 (J) or  o(J)~6 (j) for e a c h j  = 1 . . . .  ,r. 
Clearly, a and o" commute  if one of  them refines the other. Finally, we 
int roduce o ' . o  = (0, t} U (~t~: [~'~-i, ~'~+1] ¢ A~, i = 1 , . . . , n ) .  The  fo l lowing  
auxiliary s ta tement  holds: 

Proposition 2. Parti t ions o, o '  E P ( J t )  commute  iff o • o '  = o '  • o; t h e n  
O * O t ~ - a t  * O  ~ O ( ~  O t . 

Proof (a) Let  o, 6 commute  so that there exist comparab le  d e c o m p o s i -  
t ions o = (o  (I) . . . .  ,o(~)), 6 = (6 (1) . . . . .  6(~)}. Assume an arbi t rary  j = 1 , . . . , r .  
The  end points  ~ = ~k and ~, = ~-u . "  of  the subpart i t ions o (j), 6 (J) b e l o n g  
clearly to o N 6, and  also to o* 6 ~ . ~  6 . o ,  since their neighboring p o i n t s  
belong to different intervals of  the other  parti t ion.  Let, e.g., o(J) D 6(J); t]hen 
the points  of  o())\6 ()) are contained neither in o A 6, nor  in o . 6 ,  n o r  of  
course in 6 .  o. On the other  hand, it can be seen easily that  the s u b p a r t i t i o n  
#(J) belongs wholly to the sets o (1 6, o .  6, 6 .  o. Thus these sets coincide w i t h  
the more  rough subpar t i t ion in every part icular  interval, and therefore  t h e y  
equal  each other. 
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(b l) Conversely, let o* o ' =  o '*  o. Assume any two neighboring points 
rio, rio+, of o. If there is some ~'~Eo' ,~ ' io<r~<rio+ t, then the fol lowing 
possibilities arise: either rio ~< r~_, < r~ +, ~< rio + , or r~ E o '  * o and in the 
same time r~ ~ o D o * o' ;  however, the latter contradicts to the assumption.  
As to the former one: either r~_, = rio and r~+, = rio+, or at least one  of 
them belongs to (rio, rio+, ) and the same argument as above can be applied.  
Since the part i t ion o '  is finite we arrive to the following result: there  exist 
some k 1, k 2, k I < k < k 2, such that r~ = r/0 and r~2= rio + 1- Analogously,  if 
r~o < "ri < r~o+ l, then there exist i 1 < i < i 2 such that ri, = r~o and ri2 = r~o + 1. 
(b2) Assume further the decomposit ions of o and o '  generated by  o N o '  
which are clearly comparable.  Let  A = [~, 7] be an arbitrary subinterval  of 
o N o',  ~ = rio= r~o; then the interior of A contains points of at most  one  of 
the partit ions o, o' .  Suppose that this is not  true; then either ~ = r io<  r~0+l 
< rio+l < ~/or ~ = r~o< rio+l < r~o+l < r/; in both  these cases, however,  (b l )  
implies the existence of ~'~ (~, 7/) which belongs to o A o', but  according to 
the assumption ~, 7/ are neighboring points of o N o'. Consequently,  one  of 
the subparti t ions referring to A is trivial (consisting of ~, 71 only) and  the 
other  is therefore its refinement, i.e., o and o '  commute.  

Further  we introduce for any fixed o ~ P ( J ' )  the mapping P c ( o ) :  
Co[Jt; R a] --, aCo[Jt; R a] by 

r ' + ( v  i + ' -  (4) 

for  r E  Ai, i =0 ,  1 . . . . .  n -- 1, where yi ___-- ),(ri)" It assigns obviously to  each 
continuous path -/E Co[Jt; R d] the polygonal path going through the points 
yi, i =0 ,  1 . . . . .  n. In what follows we shall deal mainly with the restrictions 

e ( o ) :  PC(o)r A Co[ Jt; n d] (5) 

Properties of  the operators P ( o )  can be derived easily by means of  the 
reproduct ion kernel technique. Let  us denote 

g: j ,  × j t  ~ n :  g(z, ~ ) =  t - m a x ( r ,  £) (6) 

G:j tX j t - - - ,~ (na) :  G( . r ,~)=g(z ,~) I  a (7) 

where I d is the unit  operator  on R d. As noticed by Albeverio and Hoegh-  
Krohn  (1976), G(. , . )  represents the kernel of the opera tor  - (d2 /dr2) Id  
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with boundary conditions qo(t)= q(0)=0.  For our purpose the following 
property is important: 

Proposition 3. G(., .) is a reproducing kernel of ACo[ Jt; R a ] in the sense 
that G(,r,.)fiE ACo[J'; R a] for all ±rE jr, f iERa and the relation 

(y, G(±r,.)fi) = fi- y(~') (8) 

holds for each yE ACo[Jt; Rd]. 

Proof. If f i E R  d, then G(,r,.)fi =fig(,r, .)  belongs obviously 
A Co[ Jt; R d]. Further 

(~,G(T,.)fi): fj:y(~)'fiOg(~ ~) d~=- f.rt'y(~).fid~:'~(,r)'fi 

to 

because y ( t )=0 .  

Theorem 1. (a) P(o)  is an orthogonal projection for any ÙE ~ ( d t ) .  
(b) P(a)  commutes with P(e ')  iff the partitions a, o' commute.  
(c) P ( a ) ~  > P(e ')  iff o D e'. 
(d) dim P ( a ) =  dn(a), especially the d-dimensional subspace of 

linear paths ending in the origin corresponds to the trivial par t i t ion 
ao ={0, t } • 

Proof. (a) For an arbitrary y~ we have (P(o)'y)('ri)=Ti=T('ri) so 
(P(o))  2 = P(o). The relation 

[ - 8i, ±r <~ ,rj 
g(,ri+,,,r)--g(T,,,r)=~r-':i+ , , ,r~A, (9) 

l 0 , ~'~> ~+l 

implies easily the following identity: 

n--I 
( P ( o ' ) Y ) ( ' r )  = E (G(c'i+l,'r)-G(,ri,T))8~l('fi+l-yi) ( l O )  

i=o 

Thus we can write 
n--I 
:X - '  

i=0 

n--1 X -' 

i=O 
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and the reproducing kernel property (8) yields 

n--I 
( 'Y ,P(° )~)  = E ( ' ~ i + l - - ~ i ) ' ( ~ i + l - - ~ t ) = ( P ( ° )  ~,~[) (11) 

i=o 

for all 3', " ~  ~ ,  where ?k denotes again ~(~-~). Consequently, the operator 
P(o) is symmetric, idempotent, and defined everywhere in 0C, i.e., an 
orthogonal projection. 

(b) The mapping o~P(o) is obviously injective. If a, o' do not  com- 
mute, then o ,  o ' 5  o' , o  due to Proposition 2, and the mentioned injectivity 
together with the relation Ran P ( a ) P ( o ' ) = R a n  P(o.o ' )  show that 
P(o), P(o') do not commute too. Conversely, let o, o '  commute. A simple 
calculation using relation (10) yields 

n'--I n--1 

= E E G ( ~ ( ~ + , ) - ~ ( ~ ) ) . ( ~ ( ~ + , ) - ~ ( ~ ) ) ~ 7 ' ( ~ )  -~ 
k=0 i=0 

(12) 

where 

r,, = g(~,+,, ~ L , ) -  g(~,+,, , ; ) -  g(~,, ~;+,) + g(~,, ~;) 

for arbitrary "f, "?~ ~ ,  and analogously 

( i , e ( o ) e ( o ' ) r )  

n--1 n'--I 
= E E F~i(.~ (,ri_b 1 ) _  ~ (Ti)). (~(Tk+l)__ ~ ( T ; t  ))~i--l(~k)' --I 

i=0 k=0 

(13) 

where 

F~, = g(~';+,, ~'i+ i ) -  g(~';+ 1, ~'i)- g(T~, % , ) +  g('r;, ~) 

The interval j t  can be decomposed due to the assumption into subintervals 
A(J), j----1 . . . . .  r, such that in each of them the corresponding subpartitions 
fulfill either o (j) D(o') (j) or o (j) C(o ' )  (j). In the first case the relation (9) 
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implies 

{G a, c G  ( , )  
Fik = rE, = 0, otherwise 

for each h~ C AU). Similarly, if o u) C(o')  (j), we obtain 

8;, a ~ c a ,  ( * * )  
Fik = Fki = O, otherwise 

for each A~, C A(J). In particular, Fik = F~ =0  if the intervals A t and A~ are 
disjoint; then (12) may be rewritten as follows: 

(?,P(o')P(o)y)= i (?,P(o')P(o)y)j (14) 
j = l  

where 

(f,,e(o')e(o)v)j 

= Y~ E 
a'k C AU) A~ C A'k 

v,~(~ ( ~ L , ) -  ~ (~) )  • (Y(~,+,)- v(~,)) 8,-' (a~)' - '  

in the case that o u) D ( f f ' )  (j). The last relation can be simplified using ( * )  to 
the form 

( ~ , e ( . ' ) e ( o ) v ) +  = t t - - I  E (~ ( ,L , ) -  ~(,;1)- (v( ,L,)-  v(,,))(~,) 
a~ c au) 

(as) 

On the other hand, if o (y) C(o ')  (j), then ( ,  , )  yields 

(y , r (o ' )e (o)~) j=  Y~ (~(~,+,)-f , ( , , )) . (~(~,+,)-~(~,))87' 
A, C A (J) 

(16) 

Further ~ik = Fki SO ( ' [ ,  P(o)P(o')y) is expressed again by the formulas 
(14)-(16). Consequently, (?, P(o')P(o)y)=(~, P(o)P(o')7) for all y, ~7~ ~£, 
i.e., the projections commute. 
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(c) If a ~ a', then P(a)  and P(o') commute according to (b). The 
relations (14)-(16) now read 

-- E " 
A' k C j t  

[cf. (11)] for arbitrary -/, 7E ~ so that P(a')P((s)= P(a)P((s')= P(a'), i.e., 
P(o)>~P(o'). Another equivalent formulation of the last inequality is 
RanP(a)DRanP(a'). If 075a', then there exist Aio and ~-£0 such that 
r/0< °£o< ~~o+~" Each function from Ran P(o) is linear in A~o; it is not true 
for Ran P(a') which contains paths having a "corner" at r = ~-~o" Thus 
Ran P(o)~ Ran P(o')  or equivalently P((r)~ P(a'). 

(d) Let {ej)a=l be an orthonormal basis in R a and a---{-ri)i"=o E p ( j t ) .  
The functions 

~lij: ~[ij( 'r ) = e j (  g (  Ti+ l ,  "T ) -  g (  Ti, "T ) ) ( ~ / - 1 / 2  (17) 

i = 0  . . . . .  n -- l , j =  1 . . . . .  d, are orthonormal and span P ( a ) ~  due to (I0). 
A sequence {am}~= t of partitions is said to be crumbling if the lengths 

of all subintervals A~(om) tend to zero with m --, oo, i.e., if 

lim 8(ore) =0,  6(o,,) = max 8,(Om) (18) 
m ~ oo O~ t ~; n( o,n) -- I 

Such sequences are of central importance for polygonal-path approxima- 
tions because of the following property: 

Theorem 2. Let a sequence (o,,}~= I C°2(J t) be crumbling; then 
s-lim,,_~P(Om)= I. Furthermore, the convergence is uniform in 
the set C(J t) of all crumbling sequences: to each yE  ~ ,  e > 0  there 
exists 8[e]>0 such that I I P ( a ) 7 - T l l < t  for all oE~(J t) with 
8 (0)<  8[e], or symbolically 

s-lim P(o)= I (19) 
6 ( o ) ~ 0  

Remark. On the other hand, it is clear that if s-lim,,_ ooP(o,,) exists for 
a noncrumbling {o,,}~= 1, it cannot be equal to the unit operator. Let us 
take a suitable ~,E ~ ,  say y (z )=(2 t  - ~-)z - t2; then 

2 f r i+  I ,~ 
IIP(a)y-yll >~j~. 12r-~,.-~,-+ll-d~- 
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for each subinterval A i E e so that II e(o)~-~ I[ ~>[½8(o)] ~/2 

Proof of the theorem. We have to show that 

V=_{-yEACo[J';~a]: lim IIP(o)~,-'~II:O):ACo[J';R a] 8(0)40 

We shall prove first that V is a closed subspace in ~ .  Linearity is obvious,  
closedness follows from the ½e trick: an arbitrary Cauchy sequence (7(r)}~=~ 
C V converges in the norm to some I,E ~ ,  further 

II P ( a ) ' l ,  - "t' II <211 l ,~r) - l '  11 + I1P(a ) - l ,  o )  - -l, ~') II ( .)  

To any e > 0  there exist ro(e ) and 8o(r, e) such that 

i i . r O ) -  y i l < ½ e ,  II p ( a ) - l , o )  - .yo) II < ½e (*  *) 

for all r > ro(e ) and o E  P ( J ' )  with 8 (0 )<  8o(r, e). For an arbitrary par t i t ion 
o with 8 ( o ) <  8o(ro(e)+ 1, e) the relations ( * ), ( * * ) give I[ P(o) l ,  - 71[ < e so 
that 1' belongs to V, which is therefore closed. 

According to Proposition 1 the elements of ~ can be expressed by 
trigonometric series (2). Let {ej}J= 1 be some orthonormal basis in R d. O n e  
can check easily that the functions ujk: u:k(~)=ejvk('r), j = l  . . . . .  d, /c = 
1,2 . . . . .  where 

[ 21rN7 \ 

form an orthonormal basis in ~ .  It is sufficient therefore to verify tha t  
~vk(- ) is contained in V for a l l /~ER a and k = l , 2  . . . . .  This is trivial fo r  
k = 1. Assume further k = 2 N  and r ~  A 7 ~[~i", ~i~l]. We have 

)(8, ) 
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where 67'- 6i(Om), further a simple calculation gives 

F(  I" ) =-- -- ~ [ P( am)flv2N]('r ) + fl,32N (~") 

_ ~ .  m m 7rN m m - -  1 

+ ~ tN'~ c°s( t)~'r 
---~cos(~O~~o(~)(~)-'j 

t ' ] ( d / ~ ) - l +  t cos~-------~-] 

- ~_~ [[cos(~'r)-co~(~'r,")] 

+ t.~N,,., [ sin( 2~N'~''/--7-'I 
cos[ - ~ ' i  ) 1 [ 2~rN 

t 6y 

The last expression can be estimated by means of the inequalities 

I c°sx-cosyl<~l x-yl, 

we obtain in this way 

[F(I")I~ < -  

1 - -  sin x 1 2 

407 
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Further the estimates 

7rN 1 2~rN 2~-Ns.~<~2~rN, - -  -~- ~ < - - - ~  < ~rN 
t ' 3 

give 

SO 

f~'~'lF(~)lZd~< flz(½+TrN+IrZN2)(6~)3 

"~( 2/---~N )4/~2(q'gN--~ l)2(~irn) 3 

It holds ~ < 8(am) according to (18), thus we finally obtain 

IIP(om)BVzN--BOZNII 2 = ' I F ( ~ ' ) I Z  d ~  " 

<(2~rN)'t-3fl2(IrN+ 1)2[6(a,,,)] 2 

Since the sequence {a,,}~= l is assumed to be crumbling, we obta in  
limm_ooP(o,,)~v2u =~vzu; further the last inequality shows that this con-  
vergence is uniform in ~(jt), i.e., /3v2u~ V for any natural N. A similar 
argument applies to v2N + i, N = 1,2 . . . . .  

3. POLYGONAL-PATH APPROXIMATIONS 

The main purpose of the polygonal-path methods is to determine the 
Feynman integral and the relation objects. The term "approximat ion" is 
thus a little misleading, because it means at the same time definition of the 
"approximated quantity" too. The ideology of polygonal-path definitions of 
the F integral is essentially that of the Riemann-integral theory; howewer, 
since there is no analogy to the Darboux sums (Shilov and Gurevich, 1967) 
here the definitions must be formulated in terms of limits with respect  to 
sequences or nets of partitions. 

Let us consider now in more detail the problem of how to define t h e  F 
maps, i.e., the one-parameter family of complex-valued maps f - d #  s f r o m  a 
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suitable set of functions f on ~3C, which correspond to the formal functional 
integrals 

with s nonzero, Im s ~<0 (this subset of s in C was denoted as C r in [I]). The 
F integral clearly refers to the case s = 1, if we set for simplicity the Planck 
constant h as well as the mass(es) equal to 1. Each polygonal-path approach 
to this problem starts from a choice of mappings %: P ' ~ C  which assign to 
every partition o of some subset 62' in 62(J') "'finite-dimensional approxima- 
tions" %(0) to the functional integrals (20). The following step consists of 
taking a limit of %(o), which corresponds in some sense to gradual refining 
of o; if this limit exists it is identified with ~s. 

It is therefore clear that there exist at least two points of view for 
classification of polygonal-path methods: (i) according to a choice of %, 
and (it) according to a choice of the limiting procedure. The first one will be 
discussed only briefly here (see also remarks in the following section); we 
limit ourselves to the case which is physically the most interesting, i.e., s = 1 
and 

f( y )=exp { - i fotg( ~,('r ) + x ) d'r } u( "/(O) + x ) (21) 

where V is a potential on R d and u belongs to some subset of L2(R d). Then 
different choices of (p,(o) are possible (of course, for those V, u for which 
the corresponding expressions make sense), e.g., 

~ , (o ) :  = 1 , ( /o  e ( o ) )  (22a) 

where Ii(") is the F integral of Albeverio and Hoegh-Krohn (1976, 1979), or 

~l(° )::(2~ri )-"/2S'p(~,>o(;exp( i~" I1,"1 2 ) f(~l') dm('y') 

=(21ri)-"/2 ft,(,,)%exp[iS('y'+ x)]u('y(O)+ x)dm('t') (22b) 

where ~,'= P(a)7,  n = d i m  P(a),  further S('t) is the action along the path "/ 
and the integral in (22b) is understood in the improper sense (see Truman, 
1977, 1978, 1979; Elworthy and Truman, 1979), or finally 

~,(o):=(2~ri)-"/2~(o)~xp{iSo('Y'+ x)}u(y(O)+ x)dm(y') (22c) 
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where the action S is replaced by a Riemannian approximation S o (in fac t, it 
concerns the potential part only) corresponding to the partition o, and the 
integral is again the improper one (see Babbitt, 1963; Nelson, 1964; Combe  
et al., 1978; Tarski, 1979). The last choice admits use of the L ie -Tro t te r -  
Kato formula and gives thus stronger results than the previous two (in the 
sense that the corresponding functional integral exists and expresses dy- 
namics for a much wider class of potentials). The expression (22b) is in tu rn  
applicable to more potentials than (22a); if the latter exists and the integral 
in (22b) converges in the proper Lebesgue sense, then they equal each other  
(cf. Truman, 1978; and [I]). On the other hand, (22c) does not correspond 
exactly to the heuristic prescription of Feynman (1948) and choice o f  S o 
burdens the definition with an additional arbitrariness. Except for that, the 
improper integrals in (22b) and (22c) are sensitive to the defining prescrip- 
tion (see DeWitt-Morette et al., 1979; and [I]) so it is desirable to get r id  of 
them. 

Let us tum now to discussion of possible limits with respect to the 
partitions o. Again various possibilities arise: 

(a) The n -~ and 2 -n Approximations. The simplest choice is to take the 
sequence (a~)~= l of "equidistant" partitions (Gel'land and Yaglom, 1956; 
Babbitt, 1963; Nelson, 1964; Truman, 1977, 1978; Combe et al., 1978), i.e., 
with ~-i(n)=it/n, and to set ~,:=lim~_oo%(o~). The same can be per-  
formed with any subsequence of {o2)n% I, in particular that one wi th  
~/(n,) = 2-- ' t .  

(b) The C Approximation. One assumes all crumbling sequences a n d  
sets ~s:=lim,,_ooqos(o,,) if the limit exists for each {an,}m==l~C(J t) a n d  
does not depend on a particular choice of the sequence. 

(c) The C R and C' R Approximations. These are analogous to (b) wi th  
C(J  t) replaced by C R, the subset of refining sequences in C(Jt) ,  i.e., wi th  
om+l D o,, for all m, or by some subset C~ C C R. This is the method of 
Tarski (1979) if we identify his path space with our ~ and his projections 
with P(o), o U ~(j t ) .  He employs increasing sequences of projections wi th  
unit limit; it means just the assumptions formulated above in view of 
Theorems 1 and 2. His reference families correspond, of course, to subsets 
C~ c C R. 

(d)  The P Approximation. The set  @(jt) is partially ordered by D; 
further to each a, a' ~ ~( j t )  there exists o" ~ o~(jt), say o"  = o tO o', so tha t  
o C o" and o ' C  o". In other words, @(jt) with D is a directed set, and one  
can define dP s as a limit along it, ~s :=l im~%(a) .  More explicitly, there 
exists o e ~ ( J  t) tO each e>0  such that I¢~- ~x(o)l< ~ for all oDo,.  

(e) The Uniform Approximation. One assumes again all sequences 
{a,,}~=lEC(Jt), but requires now the convergence to be uniform wi th  
respect to the "norm" 8(0) of o, i.e. ~,: = limn(o)_ o %(a), where the l imit  is 
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understood in the same sense as in Theorem 2. This approach belongs to 
Cameron (1960) and was further used, e.g., by Johnson and Skoug (1973); a 
similar approximation, however, with a not very clearly specified subset of 
C(J t) was recently used by Elworthy and Truman (1979). 

Proposition 4. Mutual relations of the above-listed limiting prescrip- 
tions are given by the following diagram: 

~ R / / / /  ~ ' - . ~  n_ i 

where the arrows denote implications. 

Proof. (U)=(e)) :  There exists ~[e] to each e>0;  we choose o~E 6)(jr) 
such that ~(o~)< 8[e]; then we have 8 (a )<  6[e] for all o ~ a~, and therefore 
I ~ -  rps(a)[ < e for all a ~ ~, i.e., l im,~%(a)= dp~-----limB(o)_ 0 %(a ). 

(U)~(C) :  Let us take e>0,  to which some 6[e] corresponds, and an 
arbitrary (o,,}~= l~  C(Jt) ;  since the latter is crumbling there exists rn0(8[e]) 
such that 6(a, , )< die] for all m > m 0, and consequently I Cs ~ - q~s(am )1 < e for 

a -- u m > m o, i.e., lira,, _ = %( m)-- Cj independently of {O,,)m~= 1 
The remaining implications are trivial. 
We postpone commenting on these relations till the next section. Now 

we shall use the uniform polygonal-path approximation in order to extend 
domain of the F maps introduced in the paper [I], to which we refer for the 
notation. 

A function f:  ~ - - , C  is said to belong to ~ ( ~ )  for a given s ~ C  F if 
the following conditions are fulfilled: 

(i) the "cylindrical projections" foP(o) belong to ~ ' (~ ) ,  the B 
algebra of F integrable functions, for all oE e)(j ,) ;  

(ii) the uniform limit lim 8(~)- 0 Is( fo e (a) )  exists. 

Then we define naturally the uniformly extended F s map in the following 
way: 

U :  ~ " ( ~ ) - - , C ,  U ( f ) :  = lim I~(foe(o))  (23) 
~(o)-0 

in particular, I~(-) will be again called the Feynman integral. 
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Of course, one must check consistency of this extension. Another  
problem which arises here concerns relations between I_  ~ ~(-) and the Wiener  
integral; it can be solved under suitable smoothness and boundedness  
assumptions. Let us denote @[jr; R d ] =  (%: 3% = P(o)I ' ,  ~ °rS(J'), y E  0C), 
the set of all polygonal paths in %; further w and I1" II ~ will be the Wierter 
measure understood as the n-fold product measure of W measures with urlit  
dispersion on Co[Jt;R]--cf. Kuo (1975) and the uniform norm o n  
C0[J~; Rd], respectively. 

Theorem 3. (a) Let s E C  F, then @~(%)D 4 ( % )  a n d / ~ ( f ) =  I ~ ( f )  
for each f E  4 (%) .  

(b) Let fE  @~_i(%) be a restriction to % of a w measurable 
function F: Co[Jt;Rd]~C which is uniformly continuous wi th  
exception of a w zero subset of Co[J t', Rd]\@[Jt; Ra]. If there exists 
K > 0  such that I f('t)t ~< K for all y ~  @[jt; Rd], then 

I~,( f ) = fco[+'; Ra] F(Y) dw(y) 

and II_~Af)l-< K. In particular, if 

f E  @(l~l(~), f ( v )  = f%exp[i(y, V')] d~(y'),/L E °31L(%) 

then 

(24) 

fcov,;R,lF(T)aw(.g)= f~xp(-½11yII2)dl~(y) (25)  

Proof (a) Let f E  4 ( % ) ,  then the same argument as in the proof of 
Theorem 2 in [I] shows that the condition (i) is fulfilled. As to (ii), it follows 
immediately from the above Theorem 2 together with Theorem l(c) of [I]. 

(b) The set  6"~[Jt;Rd] is II.lloo-dense in Co[Jt;~d]" assume some  
• YECo[Jt;R d] and an arbitrary e>0;  then according to the Weierstrass 
theorem there exist polynomials ~rj such that I ¢~.(~)- l'j(~')l < ½d-1/2e for all 
~'E Jr, j=  1 ..... d, so the path ,t~: ,r '(~')=(lq(~') . . . . .  *rd(~')) obeys 

II~r~-- ~'11oo <½~ ( * )  

Further each ~ can be approximated by PC(o)~ [cf. (4)]: if Irj('r)=Y~-Oak"r k, 
one obtains easily 1,9(~')-(PC(a)~))(~')l ~<28(0)Y7,= z klakl  tk -  ~, thus there 
exists 8o(t ) such that 

Jl ~ ' -  e~(o)~'Jl= <½~ (* *) 
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for all o with 8 (0)<  ~0(~). Finally, the inequality 

IIW(o)yll~ <~ll-/ll~, "y~fo[J t ;R d ] (26) 

together with ( , )  give II P~(o)~r ~- P¢(o)3't[~o <½e; combining it with ( , ) ,  
(* * ) we arrive at the relation 

lim l [ 3 , - W ( o ) y [ l ~ = 0 ,  "YECo[Jt;R a] (27) 
,~(o)~O 

Now the assumed continuity of F implies 

lim F(P~(o)'t)= F('t) w--almost everywhere in C0[J ' ;  R d] 
a(o)-0 

(28) 

rewrite the last expression as follows: 

where f~(yo . . . . .  T.-i):=F(p~(o)y). On the other hand, one has 

°-' } y [v~+ ' -v* [2 , ;  ' 
k=0 

x L ( ~ ,  ° . . . . .  ~ , " - ' ) dv  °- .- d r " - '  

f~(~,o . . . . .  . / . -  1 ) = f ( p ( a ) y )  for y E ~ .  Further the relation (10) makes it 

and 

IF(y){ ~< X for w--almost all y (29) 

Further we take F(PC(o)y) = F(PC(O)yl ..... PC(o)ya); owing to the defini- 
tion of w as a product measure and using the Fubini theorem we get 

fCot j,;.qr( P%, )V ) dw(y) 

= fCot.,,;,,aw,(v,) . fCoC.,,:.dw,(v,,)F( P~(o)v, ..... P~(o)v~)  

Applying now d times the standard formula to the above cylindrical 
integrals with respect to w~ and using the Fubini theorem once more we can 
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possible to express P(o)V in terms of the orthonormal basis (17): 

n- - I  d 

e(a)3'= E E 8;'/2(3"*+'-3'*)j~j 
k = O j = l  

so we can make the substitution (3, 0 ... . .  3"-l)+3'o----P(a)3' in the las t  
integral and obtain 

fc0[ J'; nq F(PC(O)Y) dw(7)= (2~r)- "a/z~(o)0cexp { - ½117o 112 }f(yo) dm(-V.) 

=I_,(foe(.)) (30) 

where m is the Lebesgue measure on P(o)~ ;  the last equality follows f rom 
Sections 3(ii, iv) in [I]. By the assumption, the right-hand side of (30) tends 
to l£ t ( f )  with 3(o)-*0, further (24) and the related bound follow from the  
dominated convergence theorem, (27), (28) and the normalization of w. 
Finally, if f E  ~-(~), then I f(~')l ~< II f tl 0 for all 3'G ~ due to Proposition 2 
of [I] and the assertion (a) together with (24) and the definition of l _ i ( -  ) 
prove (25). 

4. CONCLUDING REMARKS 

The polygonal-path methods are not, of course, the only tool of the 
F-integral theory. Their results must be compared with the results of other  
approaches, in particular with the methods of It6 (1967), DeWitt-Morette 
(1972, 1974), and those based on analytic continuation of the Wiener 
integral [e.g., Cameron (1960, 1962-63, 1968), Cameron and Storvick 
(1966, 1968), Johnson and Skoug (1973)]. Anyhow we feel that, though the 
situation on this field is a little better now than that described by Dyson 
(1972) nine years ago, the existence of different "weakly interacting" 
concepts and of many scattered results represents the challenge to deal with 
for both mathematicians and physicists. 

In conclusion, let us make some comments on the matters discussed in 
the previous section: 

(a) On the Choice of %(o). Starting from (22a) one can avoid compli- 
cations with improper integrals in definition of the F integral. Except for 
that, the analogous approach to the F maps [cf. condition (i) of the above 
definition] allows us to treat them on an equal footing for all s E C r 
including the real ones. On the other hand, the definition under considera- 
tion applies to those f only for which all foP(a )  are continuous (cf. 
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Proposition 2 of [I]), and this seems to be too restrictive from the viewpoint 
of physical interest. An alternative way is to consider the case of real s, i.e., 
the F integrals, separately; it was pursued, e.g., by Cameron (1960, 1962-63), 
Cameron and Storvick (1968), or by Johnson and Skoug (1973). In this 
approach one defines the F~ maps for Im s <0  by polygonal-path approxi- 
mation based on %(0) defined on analogy with (22b); obviously improper 
integrals are not needed for a reasonable class of functions f. The F integral 
q~l o f f  is then defined as lim~_0+q~l_/e The idea of this definition is thus 
close to that of Gel'fand and Yaglom (1956), however, with replacement of 
the erroneous measure-theoretical determination of %(a) by the sequential 
one. Let us mention finally that a similar procedure can be applied to ~os(o) 
defined on analogy with (22c). Such a method could be promising, if only 
independence on a chosen Riemannian approximation to the action has 
been established. A certain progress in this direction was achieved by 
Cameron (1968). 

( b ) On the Limiting Prescriptions. Proposition 4 illustrates the dominat- 
ing role of the uniform approximation. As to the P approximation, we have 
not found it used in the literature; however, it represents one of the natural 
choices. Let us recall in this connection Itr 's definition (1967) of  the F 
integral, where the limit is taken along the directed set of all trace-class 
covariance operators. Let us further stress that there is no direct correspon- 
dence between the P and C R approximations, because in general conver- 
gence of a net, the index set of which is not fully ordered, does not  imply 
convergence of its subnets (in particular, subsequences) and vice versa. In 
the same sense one cannot assert that Itr 's definition yields a sequential 
approximation (cf. P.6, sec. 2 in Albeverio and Hoegh-Krohn, 1979) without 
an extra proof. 

(c) On Theorem 3. A somewhat stronger assertion can be formulated, 
namely, instead of bounded functions in part (b) one can assume those with 
limited order of growth. For this purpose one has to know the distribution 
of II~'lloo with respect to w: if d- -1  then the deduction of Cameron (1960) 
can be adapted (see below), the general case will be discussed elsewhere. 
However, as presently stated, the assumptions of the part (b) cover most of 
the physically interesting functions [cf. the right-hand side of the Feynman-  
Kac formula (Reed and Simon, 1975)]. Let us further notice that the 
function F can be discontinuous (on a w-zero set), but only outside 
P[Jt;Rd]. The analogous assumption is not stated explicitly in the men- 
tioned paper of Cameron; however, it is clear from the proof. Finally the 
relation (25) was first obtained (for d = 1, and in a slightly weaker form) by 
Truman (1978). 

(d) On Cameron's Sequential Wiener Integral. It is defined (for d = 1) 
by the uniform polygonal-path limit of ~p_i(a) analogous to (22b). Cameron 
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(1960) deduced sufficient conditions under which it can be identified w i th  
the usual Wiener integral; they are like our Theorem 3(b) with exception of 
the boundedness condition, which is replaced by the following one: there  
exists a measurable nondecreasing ~: R + --, R + such that I r(v)l < ~(ll ~ I1 ~ )  
for all 7 ~ P [ J t ; R  a] and u~p(u)exp{-u2/2 t}  is integrable on (0,oG). 
Proof of this assertion depends essentially on the distribution ~ of II't II 
with respect to the Wiener measure w~ borrowed from Erd6s and K_ac 
(1946). Cameron's argument is wrong at this point: one can check easily 
that it is not Theorem I, but Theorem II of Erd6s and Kac which gives ~0. 
Consequently, a slightly different assertion can be proved [and the assunap- 
tions of Theorems 2, 3, and 5 of Cameron (1960) must be correspondingly 
modified]: one has to demand integrability of 

oo 

u~rttp(u)u -3 
m = 0  

( -  1)m(2m + 1)exp ( - ½7r2tu-2(2m + 1) 2) 

[cf. also the theorem of Fernique quoted by Kuo (1975)]. 
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NOTE ADDED IN PROOF 

Formal application of the Euler-Maclaurin formula to the last s u m  
together with numerical analysis suggest that its asymptotics could be 
(8/rrt)l/2~p(u)exp( - u2/2t) for large u, i.e., that (2t) - l  might be the upper  
bound for a in the Fernique's theorem. In such a case, the results of 
Cameron would be recovered. 
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